Concurrent Optimization of Computationally Learned Stylistic Form and Functional Goals

نویسندگان

  • Ian Tseng
  • Jonathan Cagan
  • Kenneth Kotovsky
چکیده

Great design often results from intelligently balancing tradeoffs and leveraging of synergies between multiple product goals. While the engineering design community has numerous tools for managing the interface between functional goals in products, there are currently no formalized methods to concurrently optimize stylistic form and functional requirements. This research develops a method to coordinate seemingly disparate but highly related goals of stylistic form and functional constraints in computational design. An artificial neural network (ANN) based machine learning system was developed to model surveyed consumer judgments of stylistic form quantitatively. Coupling this quantitative model of stylistic form with a genetic algorithm (GA) enables computers to concurrently account for multiple objectives in the domains of stylistic form and more traditional functional performance evaluation within the same quantitative framework. This coupling then opens the door for computers to automatically generate products that not only work well but also convey desired styles to consumers. [DOI: 10.1115/1.4007304]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensuring Stylistic Congruity in Collaboratively Written Text : Requirements Analysis and Design IssuesMelanie

ness, concreteness, staticness, or dynamism. The other grammar-based approach to assessing stylistic goals was implemented by Ryan et al. (1992). The stylistic goals of this grammar (with settings in brackets) are as follows: emphasis (emphatic, neutral, at); clarity (clear, neutral, obscure); and dynamism (dynamic, neutral, static). In this grammar, the basis for evaluating these goals was sem...

متن کامل

COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES

Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...

متن کامل

Cat swarm optimization for solving the open shop scheduling problem

This paper aims to prove the efficiency of an adapted computationally intelligence-based behavior of cats called the cat swarm optimization algorithm, that solves the open shop scheduling problem, classified as NP-hard which its importance appears in several industrial and manufacturing applications. The cat swarm optimization algorithm was applied to solve some benchmark instances from the lit...

متن کامل

AUTOMATED SIZING OF TRUSS STRUCTURES USING A COMPUTATIONALLY IMPROVED SOPT ALGORITHM

The present study attempts to apply an efficient yet simple optimization (SOPT) algorithm to optimum design of truss structures under stress and displacement constraints. The computational efficiency of the technique is improved through avoiding unnecessary analyses during the course of optimization using the so-called upper bound strategy (UBS). The efficiency of the UBS integrated SOPT algori...

متن کامل

A Vibration Damping Optimization Algorithm for Solving the Single-item Capacitated Lot-sizing Problem with Fuzzy Parameters

In this paper, we propose a vibration damping optimization algorithm to solve a fuzzy mathematical model for the single-item capacitated lot-sizing problem. At first, a fuzzy mathematical model for the single-item capacitated lot-sizing problem is presented. The possibility approach is chosen to convert the fuzzy mathematical model to crisp mathematical model. The obtained crisp model is in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012